Strong lensing and dark matter II: Signatures of beyond-CDM physics in quadruply imaged quasars

Brinson Prize Fellow University of Chicago

PACIFIC 2024 Moorea, FP

Daniel Gilman

RXJ0911+0551

PROPERTY OF HALOS #2

PROPERTY OF HALOS #1

PROPERTY OF HALOS #2

PROPERTY OF HALOS #1

RULED OUT?

PROPERTY OF HALOS #2

PROPERTY OF HALOS #1

RULED OUT?

-> sensitive to small-scale structure

Image magnifications ~ $\partial^2 \Psi(r) / \partial r^2 \propto$ projected mass

Simulation pipeline

Dark matter Halo mass function, theory halo density profiles

Compare with data

Simulation pipeline

Dark matter physics/halo properties

- Both subhalos and line-of-sight halos
- (Sub)halo mass function amplitude & slope
- halo density profiles, concentrations
- Exotic DM physics

All code is open source: - pyHalo (generate substructure realizations) - lenstronomy (lensing calculations) - samana (simulation pipeline)

Simulation pipeline example: 1) generate realizations of halos from model CDM **WDM**

- plethora of subhalos & field halos
- halo concentration increases at lower masses

- No structure below a cutoff scale

-halo concentrations suppressed below cutoff

Simulation pipeline example: 1) generate realizations of halos from model CDM **WDM**

- plethora of subhalos & field halos
- halo concentration increases at lower masses

- No structure below a cutoff scale -halo concentrations suppressed below cutoff

Simulation pipeline example: 2) forward model lenses with halos

CDM

 $\sim 10^6$ simulations per lens for accurate statistics

WDM

Simulation pipeline example: 3) compute flux ratios

FLUX RATIO (IMAGE 1 / IMAGE 2)

Simulation pipeline example: 4) derive likelihoods

FLUX RATIO (IMAGE 1 / IMAGE 2)

All methods tested and validated on simulated datasets

Accurate inferences with unknown

- Source sizes
- Tidal stripping assumptions
- Galaxy morphologies (including deviations from ellipticity)

see: Gilman et al. (2018, 2019, 2024) arXiv: 1712.04945, 1901.11031, 2404.03253

End-to-end inference on simulated data see Gilman et al. (2019, 2024)

First application to WDM Gilman, et al. (2020)

Used narrow-line flux ratios from Nierenberg et al. (2014, 2017, 2020)

 $m_{\rm thermal} > 5.2 {\rm keV}$

Combination with Milky Way satellites (Nadler et al. 2021)

 $m_{\rm thermal} > 9.7 {\rm keV}$

Zelko et al. 2022

First constraints WDM constraints from the JWST lensed quasar dark matter survey see Keeley, Nierenberg, Gilman, et al. (2024)

arXiv: 2405.01620

EMBARGOED FOR THE NEXT 20 MIN Improve on previous constraints, by Gilman et al. (Anna's talk up next...

- 10:1 posterior odds at $10^{7.6} M_{\odot}$ ~ 6 keV thermal relics ruled out

 $\log_{10} \Sigma_{\rm sub}/\rm kpc^{-2}$

 $\log_{10} M_{\rm hm}/M_{\odot}$

What kinds of questions can we ask about dark matter?

We can test **any** theory that alters the internal and/or abundance of halos

We can test **any** theory that alters the internal and/or abundance of halos

1) DM physics that impacts the transfer function

- e.g. free-streaming in warm dark matter - ultra-light DM (plus wave-interference effects), see Laroche, Gilman et al. (2022)

Rest of talk:

2) Change the form of the primordial density fluctuations

3) Relax assumptions about the collisionless nature of dark matter

$$n(k) = n_{s} + a_{run} \log(\frac{k}{k_{0}}) + b_{run} \log^{2}(\frac{k}{k_{0}})$$

$$P_{primordial}(k) \propto k^{n(k)}$$
For $k > k_{0} = 1$ Mp
measurements
$$= 0.6, a_{run} = -0.08, b_{run} = 0.02$$

$$= 0.96, a_{run} = -0.1, b_{run} = -0.015$$

$$= 1.4, a_{run} = -0.05, b_{run} = -0.015$$

$$= 0.5, a_{run} = 0.15, b_{run} = 0.02$$
CDM

$$k[Mpc^{-1}]$$

Changes to the power spectrum produce **correlated** changes to the halo mass function and concentration-mass relation

Dashed: Sheth-Tormen mass function prediction

Solid: power-law in halo mass fit

m M d logm dV

Halo mass function

Changes to the power spectrum produce **correlated** changes to the halo mass function and concentration-mass relation

Dashed: Diemer & Joyce (2019) concentration-mass relation prediction

Solid: power-law in peak height fit

First step: try to simultaneously infer halo abundance and concentration inference performed with 11 quad lenses

> Gilman et al. (2022) arXiv: 2112.03293

Decreasing power: Less numerous and less concentrated halos

Lensing: atior If halos more numerous must be less concentrated

relatio

concent

mplit

0.0

nc

œ

Increasing power: More numerous and more concentrated halos

Amplitude of the halo mass function

Flatter than CDM prediction

Steeper than CDM prediction

Amplitude of the halo mass function

Decreasing power: Less numerous halos, Flatter halo mass function

Increasing power: More numerous halos, steeper halo mass function

Caveats

- model dependent statements about $P_{\text{primordial}}(k)$ 104-- Limited suite of simulations of structure formation with this type of 10² P_{lin}(k) [Mpc³] power spectrum 10° -Takeaway 10-2 Lensing will be able to constrain $P_{\text{primordial}}\left(k\right)$ from 10^{-4} simultaneous inferences of halo abundance and concentration 10-2

We can test **any** theory that alters the internal and/or abundance of halos

1) DM physics that impacts the transfer function

- e.g. free-streaming in warm dark matter - ultra-light DM (plus wave-interference effects), see Laroche, Gilman et al. (2022)

Rest of talk:

2) Change the form of the primordial density fluctuations

3) Relax assumptions about the collisionless nature of dark matter

Self-interacting dark matter (SIDM)

-> dark matter not collisionless; exchanges energy, momentum with itself

Self-interacting dark matter (SIDM) -> preserves large-scale structure

fSIDM $\sigma_{\tilde{t}}/m_{\chi} = 1.0 \text{ cm}^2 \text{g}^{-1}$

figure from Fischer et al. (2022)

Self-interacting dark matter (SIDM) -> collisionless (CDM-like) at high speeds ($v \sim 1,000 \text{ km s}^{-1}$) in cluster-mass halos

figure from Fischer et al. (2022)

Self-interacting dark matter (SIDM) -> "large" cross sections ($\sigma > 10 \text{ cm}^2 \text{ g}^{-1}$) at low speeds ($v \sim 30 \text{ km s}^{-1}$) inside low-mass halos

figure from Fischer et al. (2022)

Velocity dependence necessary to evade constraints from galaxy clusters

Strongly-enhanced cross section at low speeds (in low-mass halos)

 $\overline{r_s}$

Core-collapsed halos are extremely efficient lenses

Core-collapsed halos are extremely efficient lenses

Now we are looking down the line of sight

-0.05

Dark matter density relative to average

0.05 0.00

Critical curve (high magnifications)

CDM

SIDM with cores only

SIDM cores+core collapse

Self-interacting dark matter (SIDM)

Core formation+collapse match diversity of observed rotation curves?

Hints from strong lensing? Minor et al. (2021)

Minor et al. (2021)

IF we accept then the SIDM interpretation of these observations

THEN we should expect to find many collapsed halos at lower masses

Easy to achieve extremely 10^{3} high (> 100 cm^2/g) cross sections at low speeds

-> example: attractive dark force exchanged via light mediator

$$V(r) = -\alpha_{\chi} \frac{\exp\left(-r \ m_{\phi}\right)}{r}$$

 α_{γ} = potential strength

 $m_{\phi} = \text{mediator mass} \sim 1 \text{ MeV}$

 $m_{\gamma} = DM \text{ mass} \sim 1 - 10 \text{ GeV}$

 10^{-2}

10

cm²

section

Cross

Exact solutions for the scattering cross section from standard partial-wave analysis:

Model 1: Repulsive potential -> broad range of repulsive potentials have similar forms

Models 2-5: Attractive potentials with (anti-)resonances -> many SIDM formulations include multi-component DM with bound states

characteristic collapse timescale $t_0^{-1} \sim \langle \sigma v^5 \rangle / \langle v^5 \rangle \times \text{density} \times \text{velocity}$

> Yang & Yu (2022) arXiv: <u>2305.16176</u>, Yang, Du et al. (2023) arXiv: 2205.02957

Halos collapse after some multiple of the timescale

$$\lambda_{\rm sub} = 150$$

arXiv: 2207.13111

We can compute the likelihood of data given fraction of collapsed halos as a function of halo mass:

We can compute the likelihood of data given fraction of collapsed halos as a function of halo mass:

$$\mathscr{L}\left(\operatorname{data}|f_{\operatorname{collapsed}}(M)\right)$$

recast this as constraints on the core-collapse timescale

$$\lambda_{\text{sub}}, \lambda_{\text{field}}, \sigma = \int \mathscr{L} \left(\operatorname{data} | f_{\text{collapsed}}(M) \right) \\ \times p \left(f_{\text{collapsed}}(M) | \lambda_{\text{sub}}, \lambda_{\text{field}}, \sigma \right) df_{\text{collapsed}} \right)$$

lapsed

Inference on real data with 11 lenses

SIDM GAME-CHANGER

JWST lensed quasar DM survey: subject of Anna's talk up next

THE (recent) PAST: narrow-line flux ratios from HST (everything presented in this talk)

Nuclear narrow-line region

~100 pc

THE PRESENT: mid-IR flux ratios from JWST GO-2046

JWST GO-2046 "A definitive test of the dark matter paradigm"

PI Anna Nierenberg, Co-Is include D. Gilman

Survey introduction:

- Nierenberg, incl. Gilman et al. (2023) (arXiv: 2309.10101)

First results with 9 systems:

- Keeley, incl. Gilman et al. (2024) (arXiv: 2405.01620)

Future (hopefully by Dec. 2024) lensing-based constraints on SIDM

SIDM discovery

Takeaways:

If a large population of collapsed halos below $10^6 M_{\odot}$ exists, we should soon know thanks to

Upcoming surveys will find thousands of strong lenses! - this is just the beginning